关于临床试验数据的要点分析,今天北京精驰医疗为您解答:
一、分析对象的数据集
(一)全样本分析(Full analysis set)
计划治疗原则(intention-to-treat)是指主要分析应当包括所有进入随机化的遵循这一原则需要对所有随机受试者完成随访得到试验结果。由于各种理由,这在实际上是难以达到的,因此,全样本分析是尽可能接近于包括所有随机受试者,在分析中保留最初的随机化对于防止偏差和提供安全的统计检验基础很重要。在许多场合,它提供的对治疗效果的估算很可能反映了以后的实际观察结果。 从分析中剔除已随机受试者的情况不多:包括不符合重要入选标准,一次也没有用药,随机化后没有任何数据。从分析中剔除不符合入选条件受试者必须不致引起偏差:入选标准的测定是在随机化之后;违反合格标准的检测是完全客观的;所有受试者都受到同样的合格性调查;各组实行同样的入选标准,凡违反者均被排除。
(二) 遵循研究设计对象(Per Protocol Set)
"Per Protocol"对象组,有时称之为"有效病例"、"有效样本"或"可评价受试者样本;定义为全部分析样本中较好遵循设计书的一个受试者亚组: ·完成预先说明的确定治疗方案暴露。 ·得到主要变量的测定数据。 ·没有违反包括入选标准在内的重要试验设计。 从"有效受试者"组中剔除受试者的精确理由应当在揭盲前就充分限定并有文件记载。 为得到"有效受试者"而排除对象的原因和其他一些违反研究设计的问题,包括对象分配错误、试验中使用了试验方案规定不能用的药物、依从性差、出组和数据缺失等,应当在不同治疗组之间对其类型、发生频率和发生时间进行评价。
(三)不同的分析(受试者)组的作用
在验证性试验中,通常进行全样本和"有效受试者"两种分析。这样可以对两者之间的任何差别进行明白的讨论和解释。有时候可能需要计划进一步探究结论对于选择分析受试者组的敏感程度。两种分析得到基本一致的结论时,治疗结果的可信度增加。但是要记住,需要?quot;有效受试者"中排除相当数量受试者会对试验的总有效性留下疑点。 在优越性(Superiority trial,证明新药比标准对照药物优越)试验、等效性试验或不差于(non-inferiority trial,确证新产品与对照药物相当)试验中,这两种分析有不同的作用。在优越性试验中,全样本分析用于主要的分析可以避免"有效受试者"分析对疗效的过于乐观的估算;全样本分析所包括的不依从受试者一般会缩小所估算的治疗作用。但是,在等效性或不差于试验中使用全样本分析通常是不谨慎的,对其意义应当非常仔细考虑。
二、缺失值和线外值(包括异常值)
缺失值代表临床试验中一个潜在的偏差来源。因此,在实施临床试验时应当尽最大努力符合试验方案对于数据收集和数据管理的要求。对于缺失值并没有通用的处理办法,但只要处理方法合理,特别是如果处理缺失值方法在试验方案中预先写明,则不会影响试验的有效性。当缺失值数目较大时,要考虑分析结果对于处理缺失值方法的敏感程度。线外值(包括异常值)的统计学定义在某种程度上带有随意性。除了统计学判断之外加上医学判断以鉴别一个线外值(包括异常值)是最可信的方法。同样,处理线外值(包括异常值)的程序应当在方案中列出,且不可事先就有利于某一个治疗组。